

Q1.In which of the following do both quantities have the same unit?

(Total 1 mark)

Q2. Which of the following is not a unit of power?

Q3.Which of the following gives a correct unit for $\left(\frac{g^2}{G}\right)_{?}$

(Total 1 mark)

Q4. Which one of the following is a possible unit of impulse?

- **A** Ns⁻¹
- **B** kg ms⁻¹
- **C** kg ms⁻²
- **D** sN⁻¹

Q5.Which one of the following gives a correct unit for $\left(\frac{g}{G}^2\right)_?$

- **A** N m⁻²
- B N kg⁻¹
- C N m
- D N

(Total 1 mark)

Q6. Which one of the following **cannot** be used as a unit for electric field strength?

- **A** J m⁻¹ C⁻¹
- **B** J $A^{-1} s^{-1} m^{-1}$
- **C** N $A^{-1} s^{-1}$
- **D** $J C m^{-1}$

(Total 1 mark)

Q7. Which of the following is a possible unit for rate of change of momentum?

- A Ns
- **B** N s^{-1}
- **C** kg ms⁻¹
- **D** kg ms⁻²

- **Q8.** Which one of the following could be a unit of gravitational potential?
 - **A** N
 - B J
 - C N kg⁻¹
 - D J kg⁻¹

Q9. In parts (i) and (ii) circle the letter that corresponds to the correct answer.

- (i) The resistance of a negative temperature coefficient (ntc) thermistor
 - A increases as temperature increases.
 - **B** is constant at temperatures below 0 °C.
 - **C** increases as temperature decreases.
 - **D** falls to zero when a critical temperature is reached.
- (ii) The unit of potential difference can be expressed as
 - **A C** S⁻¹
 - **B** J C⁻¹
 - **C** V A⁻¹
 - **D** J A⁻¹

(1) (Total 2 marks)

(1)

Q10.The fission of one nucleus of uranium 235 releases 200 MeV of energy. What is the value of this energy in J?

- A 3.2 × 10⁻²⁵ J
- **B** 3.2 × 10⁻¹⁷ J
- **C** 3.2×10^{-11} J
- **D** 2.0 × 10⁶ J

(Total 1 mark)

Q11. Which line, A to D, gives correct units for both magnetic flux and magnetic flux density?

	magnetic flux	magnetic flux density
Α	Wb m⁻²	Wb
в	Wb	Т
с	Wb m⁻²	T m ⁻²
D	T m ⁻²	Wb m ⁻²